Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 29, No. 6, pp. 941-947, 1986

0017-9310/86 $3.00+0.00
Pergamon Journals Lid.

Conjugate Leveque solution for
Newtonian fluid in a parallel plate channel

WEN-CHIEN LEE and YI-HSU JU}

Department of Chemical Engineering and Technology, National Taiwan Institute of Technology, Taipei,
Taiwan 107

(Received 7 October 1985 and in final form 2 January 1986)

Abstract—Leveque solution for conjugate problem of high Prandtl number, Newtonian fluid flowing in a

finite length, parallel plate channel is presented. A procedure is proposed to find the approximate interfacial

temperature distribution. Itis found that the effect of wall conduction can be characterized by two parameters.

A close form, approximate solution for local Nusselt number is obtained. Although the solution presented in

this work is supposed to be valid only for x* < 0.001, results show that it does not deviate significantly from the
known eigenfunction expansion solution even when x* = 0.005.

INTRODUCTION

ALL CONVECTIVE heat transfer problems are actually
conjugate problems which treat the solid wall and fluid
as an integral system. Traditionally, most convective
heat transfer problems are treated by solving the energy
equation of the fluid phase alone, imposing the
boundary conditions at the solid—fluid interface. This is
equivalent to neglecting the effect of wall resistance;
unless the wall thermal resistance is small, the solution
willbein error. Little work has been done on solid-fluid
conjugate problems as compared to the classical
convective heat transfer problems when wall resistance
isneglected. Shahand London [ 1] gave a briefreview of
works on conjugate problems prior to 1976. Recent
works on conjugate problems were described in detail
by Barozzi and Pagliarini [2]. Theoretical analyses on
the effect of wall conduction on the rate of heat transfer
for laminar flow of Newtonian fluid flowing in a pipe or
parallel plate channel include that of Aleksashenko [3]
and that of Luikov et al. [4]. They treated the problem
as a semi-infinite duct. The solutions are expressed as a
combination of complicated functions, integrals and
infinite series. No numerical results are available to
compare with the traditional convective heat transfer
problem under the same boundary conditions. The
works of Mori et al. [5, 6] are by far the most extensive
analytical studies on conjugate heat transfer. Their
conclusions include: (1) the local Nusselt number of
conjugate problem falls between that of constant wall
temperature and constant wall flux when axial
conduction along the wall is neglected ; and (2) in the
case of constant heat flux at the outer wall, the effect of
axial conduction along the wall is to decrease the local
Nusselt number to a value closer to that of constant
wall temperature when axial conduction along the wall
is neglected. On the other hand, when the outer wall
boundary condition is isothermal, the effect of axial
conduction along the wall is to increase the local

1 To whom correspondence should be addressed.
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Nusselt number to a value closer to that of constant
wall flux when axial conduction along the wall is
neglected. The conjugate problem of Poiseuille-
Couette flow between parallel flat plates was treated by
Davis and Gill [7]. When constant heat flux was
imposed at the outer wall, their results agree closely
with that of Mori et al. [6]. A general description of
conjugate problems with examples in heat and mass
transfer applications was given by Davis and
Venkatesh [8]. Solutions were obtained by using
integral equation formulations.

For low Péclet number convective heat transfer, the
effect of axial conduction must be included in fluid as
well as in solid phases. The energy equations for both
phases are elliptic and more difficult to solve than the
case when fluid axial conduction is neglected.
Analytical solutions of the conjugate problem with
axial conduction include that of Papoutsakis and
Ramkrishna [9], Ju and Lee [10]. In principle, the
solutions are expressed as an infinite series of
eigenfunctions. The crux of the solution is to apply the
matching principle at the solid—fluid interface which
requires that both the temperature and the heat flux be
continuous.

Numerical methods have been applied by some
nvestigators to solve conjugate problems. Fahri and
Sparrow [11] treated a pipe as having infinite domain
and assumed the thickness of the wall to be small so that
the energy equation for the solid phase reduced to a
one-dimensional heat conductionequation. Barozzi and
Pagliarini [2] solved the conjugate heat transfer
problem of a heated section of pipe of finite length by
using a combination of the finite-element method at the
wall and the superposition principle at the interface.

The use of the eigenfunction expansion technique in
the analytical solution of conjugate problems has
limitations in application. When the axial distance is
small or the Prandtl number is large, the convergence of
the series solution is slow and instability may arise in
actual numerical calculation. This is why the results of
both Mori et al. [5, 6] and Davis and Gill [7] are
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NOMENCLATURE
A; coefficient defined in equation (17) Greek symbols
B(i, j) beta function o thermal diffusivity of fluid
b  half depth of parallel plate channel A dummy variable
C, specific heat of fluid u  viscosity
k  thermal conductivity p  density of fluid
L length of parallel plate channel I'( ) gamma function
Nu, local Nusselt number 0  dimensionless temperature
p  pressure 7,, wall shear stress
Pe Péclet number, 4bu,, /o ¢ dimensionless dummy variable
Pr Prandtl number d  thickness of the flat plate
Q. dimensionless g, g, L/k,T, A parameter defined in equation (14).
4, heat flux at outer wall
q" Theat flux at interface Subscript
T temperature f fluid
u  axial velocity of fluid i interface
x  axial coordinate m bulk mean value
x* dimensionless axial coordinate, x/L 0 inlet
x'  x/(4bPe) s solid
y  coordinate normal to x w  wall
y* dimensionless y, y/L. x  local value at position x

applicable only to low Prandtl number gases. For fluids
with a large Prandtl number, the diffusion of heat is
limited to a thin layer (called the boundary layer) near the
wall and can be predicted. Stewart [12-14] applied
this principle to solve three-dimensional heat transfer
problems. In this paper, results of the effect of wall
resistance on the rate of heat transfer of high Prandtl
number, Newtonian fluid flowing between parallel
plates are presented.

ANALYSIS AND SOLUTION

Figure 1 is a schematic description of the conjugate
heat transfer problem considered in this work. Since the
fluid considered in this work has a high Prandtl
number, the velocity at the inlet can be assumed to have
a fully developed profile. Fluid is assumed to enter
the channel with a uniform temperature Ty, For the
convenience of analysis, both end surfaces of the
parallel plate are assumed insulated. Under assump-
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FiG. 1. Schematic diagram of the problem and the coordinate
system.

tions of steady state and constant physical properties,
energy equations for both phases are linear and are
coupled through boundary conditions at the interface
which require that both the temperature and the heat
flux be continuous. Energy equations for the fluid phase
and solid phase are

pCu(0Ty/0x) = k(8°Ty/0y?) ¢y
*T/ox* +0*T,/8y* =0 ()
with boundary conditions
=T, at x=0, O0<y<?2b (3)
L =T =T(x) (4a)
at y=0, 0<x<L
—k; 0T¢/0y = —k, OT/y (4b)
0T,/ox =0 at x=0 and x=L, —-d<y<O
5)
For uniform wall temperature (UWT)
T,.=T, at y=—9, 0<x<L. (6a)
For uniform heat flux (UHF)
—k,0T,j0y =q, at y=-9d, O0<x<L. (6b)

Note that both boundary conditions (6a) and (6b) are
imposed at the outside surface of the wall. Because of
symmetry, only the lower half of the duct has been
considered. Energy equations (1) and (2) are coupled
through boundary conditions (4a) and (4b) which
means that both temperature and heat flux are
continuous at the interface. This is called a conjugate
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problem. For fluids with a high Prandtl number, the
thermal boundary layer is very thin near the channel
entrance and velocity of fluid in the thermal boundary
layer can be approximated by a linear function of
transverse distance y

u = (1,/Wy+0(?). @)

If higher accuracy is needed the term (1/2y) (dp/dx)y?
can be added to the RHS of equation (7) and the error
will be O(y?). If the wall resistance is neglected, the
solution of equation (1) with the velocity given by
equation (7) and boundary condition of constant wall
temperature can be expressed as

7;_Tw _ 1 ! 43
TO—TW—*F(4/3) L exp (—¢°) dt 8)

where

_Y

A u,b?/3ax)t’3.

n
Since equation (8) is a solution of boundary-layer type,
it satisfies T; = Tj, as y — o0. The local Nusselt number
that corresponds to temperature distribution given by
equation (8) is

Nu, = 1.233/(x )13, )

This is the famous Leveque solution which is an accur-
ate asymptotic solution for x* = x/(4bPe) < 0.001.
However, due to the effect of wall conduction, the
solid—fluid interface temperature will no longer be
constanteven when the outside wall temperatureis held
constant. The interface temperature will in general be
function of x. By the application of Duhamel’s theorem,
the fluid temperature can be expressed as

=T+ j [TH—Tol
0
n(x—2.y)

0 1
Xa[l—m . exp(—-ts)dtjldl.

(10)

Equation (10) is transformed into dimensionless form
as

b, = 1+fx (09— 11

0

3 1 Hx*—&, %) )
Xaxﬁ[l—m‘[\o CXp(—t)dt]dé
a1

where

x* =x/L, y*=y/L
0=T/T, (UHF)
0 =(T-T)(T,—T,) (UWT).

Temperature distribution in the solid phase can be
found by the method described in Carslaw and Jaeger
[15]. The temperature distribution for solid phase with
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boundary condition of UHF and UWT is

® cosh nn(y*+6/L)
6=2% cosh nrnd/L

n=1

V]

1
X COS nex* f 0.(&) cos nné dé

1
+4f 0:8)d¢—-Q.y* (UHF) (12a)
0

®, sinh nr(y* + 6/L)
9 = 2 —_—_—
° ,,Zl sinh nnd/L

1

X cos nax* J 0,(&) cos nné dé

[}

+<i +1) J "6(9de (UWT). (12b)

S/L o

In equations (11) and (12), 6;(x*) remains as an
unknown which should be determined by applying the
principle of continuity of heat flux at the solid interface,
i.e. equation (4b). By substituting equations (11) and
(12)into equation (4b) we have for the case of the UHF
boundary condition

1 - 1 g
W . [6:8)— ]t'ix—*(x -9 g

é
=Q,—2 Y nntanh nm - cos nnx*
n=1

X jl 0,(&) cos neédE  (13a)

0

and for the case of UWT boundary condition

! T 0@-11=" -1
AQPT@ES) |, [6:&)— ]6x_*(x ) ¢

1 1

3L fo i(S) d¢g

0 S 1
—2 Y nrcoth nn T cos nmx* f 6,(¢) cos nné d¢

n=1 0
(13b)

where the parameter A is defined as

A = (b/Ly*PPe™ " (k,[ky). (14)

By applying Abel’s transformation formula [16],
equations (13a) and (13b) are transformed into
equations (15a) and (15b) respectively

_T@3(2)sinmg3
T

X {3wa*”3—-2 OZO: [fl 0,(8) cos nné dé:l

0, (x*)—1

tanh é [ cosnns
xnutanhnr— | ———
L Jo (x*—s)*3

ds} (15a)
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_T@R)ay sinag3

T
3x*1/3 1
x {—- 3L L 0i(¢yd¢
I 1
-2y [f 0,(&) cos nné dﬁ]
n=1 4]
& [** cosnzns
x nn coth ni Z J\O ()—CTS)Z/_S

Since 6;(x*) appears both in the RHS and the LHS of
equations (15a) and (15b), an explicit form of 8,(x*) is
not available. We use an iteration method to find 6,(x*)
using the wall temperature obtained when wall
resistance is neglected as an initial guess, i.e.

6,(x*)—1

ds}. (15b)

OGN = 1+ 31“(4/3)(1173[)1/3 sin 7/3 AQ, X+
(UHF) (16a)
AO(x*y = 1 (UWT). (l6b)

Equations (16a) and (16b) are substituted into the RHS
of equations (15a) and (15b) to obtain 6{"(x*) in the
LHS. This procedure is continued until the required
accuracy is met. If the wall resistance is small, i.e. if 6/L
or A is small, it needs only one or two iterations to
obtain a satisfactory 8;(x*). However, for large values of
O0/L or A, the iteration converges too slowly to be
practical. In this case, an alternative procedure is used
[17]. From equations (15a) and (15b), it seems that
6,(x*) can be expressed as a power series of x*!/3, Tt is
assumed that 6,(x*) can be expressed as
N
O (x*)—1 =3 Ax*P, amn
j=o

From equations (13a) and (13b), we see that the RHSs
arein the form of a Fourier cosine series. As an example,
if equation (17) is substituted into (13a), we have

1
A(12)*1*T°(4/3)

2

N .
- J i

Agx*~13 E A;=B|=, %) x*i- 13

xl: oX +,~=1 i3 <3 3)x ]

0

]
=0,-2 Y, [nn tanh nn 7 o8 nmx*

n=1

1
xj <1+§: Ajéj“) cos nné dé:l.
0 i=0

Multiply both sides of equation (18) by cos jnx*,j = 0,
1,2,..., N and integrate with respect to x* from O to 1,
we have N+1 linear algebraic equations in N+1
unknowns Aq, A,,4,,..., Ay which can be solved easily
by Gauss elimination.

After obtaining the interfacial temperature profile,
we can proceed to calculate the fluid temperature and
hence the rate of heat transfer. The interface local

(18)
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Nusselt number is defined as

_ 4bg; [k

Nu, = .
T,

(19)

The relation between Nu, and 8,(x*) is

Nu. = (16/3)"2 (b/L)(ky/ke)
T T4/3) A

= 0
X{J [(%(é)—l]a—*(x*—é)_”3 dé}/[gi(X*)°‘1]-
0 X
(20)

Or by substituting equation (17) into (20), we have
(4/3)'7 - Y Jn(2]
Nu, = Apxt—13 ~B(-,=
“e=Tam [ A 238055
b o ti- 13
X A; 4ZPe xty f6,(xv—1]. (21

If only A, is present in equation (17), then equation (21)
reduces to the classical Leveque solution for constant
wall temperature, i.e. equation (9). If only A4, is present,
equation (21) reduces to

Nu, = 1.490/x'1/3

22)

which s the classical Leveque solution for constant wall
flux.

RESULTS AND DISCUSSION

From the analysis presented in the previous section,
we see that even for a simple conjugate problem as that
discussed in this work, the solutions are much more
complicated than the classical convective heat transfer
problems. The local Nusselt number for the classical
Leveque solution is a function of dimensionless axial
distance only. For the conjugate problem described in
this work it is apparent, from equations (15a), (15b) and
(20), that the local Nusselt number depends on four
parameters and can be expressed as

bk,

Nug =
STk

Sn(A, x/L, 3/L)
or

Nut = Nu, / (% %) — f(A, X/L, /L)

In the results of Mori et al. [6], local Nusselt number
depends on four parameters: b/L, /L, Pe and k/k;. In
this work, if we treat Nu¥ as a reduced Nusselt number,
then Nu¥ depends only on two parameters besides axial
distance. It should be mentioned that A is a lump
parameter which combines the effects of Pe, k,/k; and
b/L.In other words, the dependence of Nu, on Pe, k /k;
and b/L is not individually but through a lump
parameter A. Results for boundary condition of
uniform heat flux will be presented in detail.

Figures 2 and 3 show the effect of A and /L on the
interface temperature profile. From these two figures, it
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Fi1G. 2. Axial distribution of interfacial temperature for
different values of 6/L, UHF case, A = 1.36.

100

is clear that an increase in §/L or A tends to make the
interfacial temperature more uniform. As discussed in
the previous section, since A is a lump parameter which
combines the effects of Pe, b/L and k,/k;, results of this
work are superior to those of previous investigators in
which only the effects of individual parameter were
shown.

Figures 4 and 5 show the results of reduced local
Nusselt number as a function of axial distance with A
and &/L as parameters, respectively. Mori et al. [6]
obtained interfacial temperature as well as local
Nusselt number as function of axial distance by using
the eigenfunction expansion technique. A comparison of
Figs. 2 and 4 with those presented by Mori et al. shows
close agreement except for a small discrepancy (~5%)
when x' = 0.005 which corresponds to the channel
outlet in Mori et al.’s case. This is because at a distance
far from the channel inlet, the assumption of a thin
thermal boundary layer may not be valid. As long as
x' < 0.001, the solution of this work is very accurate. It
should be mentioned that for small x!, the
eigenfunction expansion solution converges too slowly

200
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FiG. 3. Axial distribution of interfacial temperature for
different values of A, UHF case, §/L = 0.05.
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F16. 4. Axial distribution of local Nusselt number for different
values of A, UHF case, /L = 0.05.

to be of practical value. In Mori et al’s work, at
xt < 0.001, up to 40 terms had to be used in the
eigenfunction expansion solution. The calculation is
tedious and solution may not converge. In most
practical applications, except for the heat transfer
involving liquid metals, the Péclet number is large
enough such that x! < 0.001, except possibly far away
from the channel inlet. The asymptotic solution
presented in this work can be applied to find the local
Nusselt number.

Figures 6 and 7 show the local Nusselt number as
function of axial distance on log—log scale with A and
d/L as parameters. As expected, all results fall between
the classical Leveque solutions for constant wall
temperature and constant wall flux.

CONCLUDING REMARKS

The heat transfer problem of a high Prandtl number,
Newtonian fluid flowing between two thick, parallel
platesissolved in this work. This is a conjugate problem
in which the energy equations of solid phase and liquid

00— T
9.00 A= ],36 B
700 7
* %
=z
500 4
]
300 _
100 2 1 L 1 . L L ) I
000 020 040 0680 080 100

x/L
Fi1G. S. Axial distribution of local Nusselt number for different
values of 6/L, UHF case, A = 1.36.
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FiG. 6. Log-log plot of axial distribution of local Nusselt
number for different values of A, UHF case, /L = 0.05.

phase are coupled through boundary conditions at the
interface. The results are characterized by two
parameters : one is the ratio of the thickness of flat plate
to the length of the channel and the other is a lump
parameter which combines the effects of all other
parameters. Although we have only treated Newtonian
fluid flowing between parallel plates in this work, the
same method can be applied to non-Newtonian fluid
flowing in ducts of other geometries.
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SOLUTION CONJUGUEE DE LEVEQUE POUR UN FLUIDE NEWTONIEN DANS UN
CANAL A PLANS PARALLELES

Résumé—On présente la solution de Lévéque pour le probléme conjuguée d'un fluide newtonien a grand

nombre de Prandtl qui s’écoule dans un canal 4 plans paralléles de longueur finie. Une procédure est

proposée pour trouver la distribution approchée de la température interfaciale. On trouve que leffet de

la conduction pariétale peut étre caractérisé par deux paramétres. Une solution analytique approchée du

nombre de Nusselt local est obtenue. Bien que la solution présentée est supposée valable seulement pour

x* < 0,001, les résultats ne s’écartent pas significativemnent de la solution connue par développement en
fonctions propres, méme quand x* = 0,005.
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DIE GEKOPPELTE LEVEQUE-LOSUNG FUR NEWTON’SCHE FLUIDE
IN EINEM RECHTECKKANAL

Zusammenfassung—Die Leveque-Losung fiir ein gekoppeltes Problem bei Newton’schen Fluiden mit
groBer Prandtl-Zahl, die in einem Rechteckkanal von begrenzter Linge strdmen, wird vorgestellt. Ein
Verfahren wird vorgeschlagen, um die Grenzflichentemperatur-Verteilung niherungsweise zu ermitteln.
Es ergab sich, daB der EinfluB der Wirmeleitung in der Wand mit zwei Parametern charakterisiert werden
kann. Man erhiilt eine geschlossene Néherungslosung fiir die Ortliche Nusselt-Zahl. Obgleich fiir die in
dieser Arbeit vorgestellte Losung angenommen wird, daB sie nur fir x* < 0,001 giiltig ist, zeigen die
Ergebnisse, daB sich sogar fiir den Wert x* = 0,005 keine bedeutenden Abweichungen von der bekannten
Losung (Entwicklung der Eigenfunktion) ergeben.

COIPSI)KEHHOE PEMEHUE JIEBEKA [AJ11 TEUEHHUA HLIOTOHOBCKOH XXUIKOCTU
B ITAPAJIJIEJBHOM TIJIOCKOM KAHAIJIE

Annorauua—IlosnyyeHo peliteHue JleBeka conps)eHHOH 3afauu /s TeYeHHS HbIOTOHOBCKOM XUIKOCTH
¢ 6osb1MM yuciaoM [IpaHaTas B napasleIbHOM IIOCKOM KaHaJle KOHeyHO# AnnHbL. [Tpeanoxken MeTon
HaXOXICHUS TIPUOJIMDKEHHOTO pacnpefesIeHAs TeMIepaTypbl Ha MexdasHoil rpannue. [Tokasano, uto
3bdekT NPOBOAMMOCTU CTEHKHM MOXKeT ObITh OXapakTepH30BaH OBYyMs napamerpamu. [lonyyeHo 3am-
KHYTO€ MPUOJIMKEHHOE BRIpaXKeHHe I MecTHoro unciaa Hyccenbta. HecMoTps Ha 10, 4TO €O ¢Tporoii
TOYKHM 3PCHHs pellleHHe CIPaBeAIHBO TOabko i x* < 0,001, peaynbTaThl NOKAa3bIBAIOT, YTO HET
CYLIECTBEHHOTO OTKJIOHEHHS! OT H3BECTHOTO DEIUEHHS [JISl Pa3JIOKEHHA N0 COOCTBEHHbIM (byHKUMAM
naxe mpu x* = 0,005.
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