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Abstract-Leveque solution for conjugate problem of high Prandtl number, Newtonian fluid flowing in a 
finite length, parallel plate channel is presented. A procedure is proposed to find the approximate interfacial 
temperature distribution. It is found that theeffect ofwall conduction can be characterized by two parameters. 
A close form, approximate solution for local Nusselt number is obtained. Although the solution presented in 
this work is supposed to be valid only for x+ < 0.001, results show that it does not deviate significantly from the 

known eigenfunction expansion solution even when x+ = 0.005. 

INTRODUCTION 

ALL CONVECTIVE heat transfer problems are actually 
conjugate problems which treat the solid wall and fluid 
as an integral system. Traditionally, most convective 
heat transfer problems are treated by solving the energy 
equation of the fluid phase alone, imposing the 
boundary conditions at the solid-fluid interface. This is 
equivalent to neglecting the effect of wall resistance; 
unless the wall thermal resistance is small, the solution 
will be in error. Little work has been done on solid-fluid 
conjugate problems as compared to the classical 
convective heat transfer problems when wall resistance 
is neglected. Shah and London [l] gave a briefreview of 
works on conjugate problems prior to 1976. Recent 
works on conjugate problems were described in detail 
by Barozzi and Pagliarini [Z]. Theoretical analyses on 
the effect of wall conduction on the rate of heat transfer 
for laminar flow of Newtonian fluid flowing in a pipe or 
parallel plate channel include that of Aleksashenko [3] 
and that of Luikov et al. [4]. They treated the problem 
as a semi-infinite duct. The solutions are expressed as a 
combination of complicated functions, integrals and 
infinite series. No numerical results are available to 
compare with the traditional convective heat transfer 
problem under the same boundary conditions. The 
works of Mori et al. [S, 61 are by far the most extensive 
analytical studies on conjugate heat transfer. Their 
conclusions include : (1) the local Nusselt number of 
conjugate problem falls between that of constant wall 
temperature and constant wall flux when axial 
conduction along the wall is neglected; and (2) in the 

case of constant heat flux at the outer wall, the effect of 
axial conduction along the wall is to decrease the local 
Nusselt number to a value closer to that of constant 
wall temperature when axial conduction along the wall 
is neglected. On the other hand, when the outer wall 
boundary condition is isothermal, the effect of axial 
conduction along the wall is to increase the local 
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Nusselt number to a value closer to that of constant 
wall flux when axial conduction along the wall is 
neglected. The conjugate problem of Poiseuille- 
Couette flow between parallel flat plates was treated by 
Davis and Gill [7]. When constant heat flux was 
imposed at the outer wall, their results agree closely 
with that of Mori et al. [6]. A general description of 
conjugate problems with examples in heat and mass 
transfer applications was given by Davis and 
Venkatesh [8]. Solutions were obtained by using 
integral equation formulations. 

For low P&let number convective heat transfer, the 
effect of axial conduction must be included in fluid as 
well as in solid phases. The energy equations for both 
phases are elliptic and more difficult to solve than the 
case when fluid axial conduction is neglected. 
Analytical solutions of the conjugate problem with 
axial conduction include that of Papoutsakis and 
Ramkrishna [9], Ju and Lee [lo]. In principle, the 
solutions are expressed as an infinite series of 
eigenfunctions. The crux of the solution is to apply the 
matching principle at the solid-fluid interface which 
requires that both the temperature and the heat flux be 
continuous. 

Numerical methods have been applied by some 

investigators to solve conjugate problems. Fahri and 
Sparrow [ 1 l] treated a pipe as having infinite domain 
and assumed the thickness of the wall to be small so that 
the energy equation for the solid phase reduced to a 
one-dimensional heat conduction equation. Barozzi and 
Pagliarini [2] solved the conjugate heat transfer 
problem of a heated section of pipe of finite length by 
using a combination of the finite-element method at the 
wall and the superposition principle at the interface. 

The use of the eigenfunction expansion technique in 

the analytical solution of conjugate problems has 
limitations in application. When the axial distance is 
small or the Prandtl number is large, the convergence of 
the series solution is slow and instability may arise in 
actual numerical calculation. This is why the results of 
both Mori et al. [S, 63 and Davis and Gill [7] are 
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NOMENCLATURE 

Aj coefficient defined in equation (17) 
B(i, j) beta function 
b half depth of parallel plate channel 
C, specific heat of fluid 
k thermal conductivity 
L length of parallel plate channel 
Nu, local Nusselt number 
p pressure 
Pe PCclet number, 4bu,/a 
Pr Prandtl number 

Q, dimensionless q,,,, q,L/k,T, 
q,,, heat flux at outer wall 

4” heat flux at interface 
T temperature 
u axial velocity of fluid 
X axial coordinate 
x* dimensionless axial coordinate, x/L 
xt x/(4bPe) 

Y coordinate normal to x 

Y* dimensionless y, y/L. 

Greek symbols 
LX thermal diffusivity of fluid 
1 dummy variable 

p viscosity 

P density of fluid 
I( ) gamma function 
H dimensionless temperature 

Tw wall shear stress 
5 dimensionless dummy variable 
6 thickness of the flat plate 
A parameter defined in equation (14). 

Subscript 
f fluid 
i interface 
m bulk mean value 
0 inlet 
S solid 
W wall 
X local value at position x 

applicable only to low Prandtl number gases. For fluids 
with a large Prandtl number, the diffusion of heat is 
limited to a thin layer (called the boundary layer) near the 
wall and can be predicted. Stewart [12-141 applied 
this principle to solve three-dimensional heat transfer 
problems. In this paper, results of the effect of wall 
resistance on the rate of heat transfer of high Prandtl 
number, Newtonian fluid flowing between parallel 
plates are presented. 

ANALYSIS AND SOLUTION 

Figure 1 is a schematic description of the conjugate 
heat transfer problem considered in this work. Since the 
fluid considered in this work has a high Prandtl 
number, the velocity at the inlet can be assumed to have 
a fully developed profile. Fluid is assumed to enter 
the channel with a uniform temperature T,. For the 
convenience of analysis, both end surfaces of the 
parallel plate are assumed insulated. Under assump- 

FIG. 1. Schematic diagram of the problem and the coordinate 
system. 

tions of steady state and constant physical properties, 
energy equations for both phases are linear and are 
coupled through boundary conditions at the interface 
which require that both the temperature and the heat 
flux be continuous. Energy equations for the fluid phase 
and solid phase are 

pC,r.@T,/8x) = kf(d2T,/ayz) (1) 

a27yax2 + a2iyay2 = 0 (2) 

with boundary conditions 

Tf = To at x = 0, 0 <y < 2b (3) 

Tf = T, = T(x) 

1 

(4a) 

at Y=O, O<x<L 

-k, aTlay = -k, aTjay WI 

aTJax=O at x=0 and x=L, -6<y<O. 

(5) 

For uniform wall temperature (UWT) 

Ts=Tw at y=-6, O<x<L. (ha) 

For uniform heat flux (UHF) 

-k,aT@y=q, at ~=--a, O<x<L. (6b) 

Note that both boundary conditions (6a) and (6b) are 
imposed at the outside surface of the wall. Because of 
symmetry, only the lower half of the duct has been 
considered. Energy equations (1) and (2) are coupled 
through boundary conditions (4a) and (4b) which 
means that both temperature and heat flux are 
continuous at the interface. This is called a conjugate 
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problem. For fluids with a high Prandtl number, the 
thermal boundary layer is very thin near the channel 
entrance and velocity of fluid in the thermal boundary 
layer can be approximated by a linear function of 
transverse distance y 

u = (%/fi)Y + 0(Y2). (7) 

If higher accuracy is needed the term (1/2p) (dp/dx)y’ 
can be added to the RHS of equation (7) and the error 
will be 0(y3). If the wall resistance is neglected, the 
solution of equation (1) with the velocity given by 
equation (7) and boundary condition of constant wall 
temperature can be expressed as 

T,-T, 1 q 

To-T, =- I r(4/3) 0 
exp (- t3) dt (8) 

where 

rj = f (u,b2/3ax)“3. 

Since equation (8) is a solution of boundary-layer type, 
it satisfies Tf = To as y -+ co. The local Nusselt number 
that corresponds to temperature distribution given by 
equation (8) is 

Nu, = 1.233/(~+)“~. (9) 

This is the famous Leveque solution which is an accur- 
ate asymptotic solution for x+ = x/(4bPe) < 0.001. 
However, due to the effect of wall conduction, the 
solid-fluid interface temperature will no longer be 
constant even when the outside wall temperature is held 
constant. The interface temperature will in general be 
function of x. By the application of Duhamel’s theorem, 
the fluid temperature can be expressed as 

r, = To+ 

(10) 
Equation (10) is transformed into dimensionless form 
as 

O,=l+ 
s 

X* lIei( ll 

x i[l-&jy-““exp(-l’)d,]d, 

(11) 

where 

x* = x/L, y* = y/L 

0 = T/T, (UHF) 

0 = (T- T,)/(T,- T,) (UWT). 

Temperature distribution in the solid phase can be 
found by the method described in Carslaw and Jaeger 
[ 151. The temperature distribution for solid phase with 

boundary condition of UHF and UWT is 

8s = 2 f cash nn(y* + h/L) 
It=1 cash nnh/L 

5 
1 

x cos mx* O,(t) cos nn< dl 
0 

1 

+ 

s 
@i(5) d5 - Q,Y* (UHF) (124 

0 

Bs = 2 2 sinh nn(y* +6/L) 

“=I sinh n&IL 

s 1 

x cos nnx* Oi(<) cos ml d< 
0 

@i(5) dt (UWT). (12b) 

In equations (11) and (12), &(x*) remains as an 
unknown which should be determined by applying the 
principle of continuity of heat flux at the solid interface, 
i.e. equation (4b). By substituting equations (11) and 
(12) into equation (4b) we have for the case of the UHF 
boundary condition 

1 

i 
z 

A(12)“3r(4/3) o 
[e,(c)- l] $ (X* et)- 1’3 d{ 

cc 6 
= Q, - 2 1 nn tanh nn - cos nxx* 

n=1 L 

s 1 

X O,(c) cos nn< d< (13a) 
0 

and for the case of UWT boundary condition 

[e,(c)-1] &(X*-,,,‘dt 

@i(5) d5 

co 6 
-2 1 nn coth nz - cos nm* 

L 
O,(t) cos n7rr dt 

II=1 

(W 

where the parameter A is defined as 

A = (b/L)2’3Pe- “3(k,/kf). (14) 

By applying Abel’s transformation formula [16], 
equations (13a) and (13b) are transformed into 
equations (15a) and (15b) respectively 

e,(X*)_l = U4/3)W)‘i’ sin43A 
7l 

m 

= [S 

1 

O,(t) cos nnl dt 
n=, 0 1 

6 

s 

X* 
x na tanh nn - 

cos nm- 

L 0 (x*-p 
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e,(x*) - 1 = 
l-(4/3) (12) l/3 sin a/3 A 

7c 

-2 f [s 1 

e,(l) cos nn[ d< 
n=1 0 1 

6 s x’ x nn coth nn - 
L (W o 

Since oi(x*) appears both in the RHS and the LHS of 
equations (15a) and (15b), an explicit form of 0,(x*) is 
not available. We use an iteration method to find &(x*) 
using the wall temperature obtained when wall 
resistance is neglected as an initial guess, i.e. 

@o’(x*) = 1 + 3r(4/3)(12)“3 sin n/3 AQwx* ,,3 
n 

(UHF) (16a) 

eiO’(x*) = 1 (UWT). (16b) 

Equations (16a) and (16b) are substituted into the RHS 
of equations (15a) and (15b) to obtain @‘)(x*) in the 
LHS. This procedure is continued until the required 
accuracy is met. If the wall resistance is small, i.e. if 6/L 
or A is small, it needs only one or two iterations to 
obtain a satisfactory &(x*). However, for large values of 
6/L or A, the iteration converges too slowly to be 
practical. In this case, an alternative procedure is used 
[17]. From equations (15a) and (15b), it seems that 
ei(x*) can be expressed as a power series of x*1/3, It is 
assumed that 8,(x*) can be expressed as 

ei(x*)- 1 = 2 Ajx*ji3, 
j=O 

(17) 

From equations (13a) and (13b), we see that the RHSs 
are in the form of a Fourier cosine series. As an example, 
if equation (17) is substituted into (13a), we have 

x 

[ 

Aox*-‘/3+ 2 A,fB 2 L x*ci-u/3 

j=l . (3’3) ] 

=Q,-2 F 
6 

nx tanh na - cos nnx* 
n=l L 

(18) 

Multiply both sides of equation (18) by cos jnx*, j = 0, 
1,2,. , N and integrate with respect to x* from 0 to 1, 
we have N + 1 linear algebraic equations in N + 1 
unknowns A,, A,, A,, . , A, whichcan besolvedeasily 
by Gauss elimination. 

After obtaining the interfacial temperature profile, 
we can proceed to calculate the fluid temperature and 
hence the rate of heat transfer. The interface local 

(19) 

Nusselt number is defined as 

Nu = 4&/k, 
X ?-;--T,’ 

The relation between Nu, and 0,(x*) is 

Nu = (16/3P3 (b/L)@,/&) 
X 

r(4/3) A 

{S 

x’ 
X [e,(T)- l] & (x* - <)- 1’3 dc [Oi(x*) - 1). 

0 

(20) 

Or by substituting equation (17) into (20), we have 

x A, (4; Pe)jllf(j- q//[e,(,*)- 1,. (21) 

If only A, is present in equation (17), then equation (21) 
reduces to the classical Leveque solution for constant 
wall temperature, i.e. equation (9). If only A, is present, 
equation (21) reduces to 

Nu, = 1.490/~“‘~ (22) 

which is the classical Leveque solution for constant wall 
flux. 

RESULTS AND DISCUSSION 

From the analysis presented in the previous section, 
we see that even for a simple conjugate problem as that 
discussed in this work, the solutions are much more 
complicated than the classical convective heat transfer 
problems. The local Nusselt number for the classical 
Leveque solution is a function of dimensionless axial 
distance only. For the conjugate problem described in 
this work it is apparent, from equations (Isa), (15b) and 
(20), that the local Nusselt number depends on four 
parameters and can be expressed as 

or 

Nu, = i 1 f n(A, x/L, 6/L) 
f 

Nu:=Nu, ;; 
il( > 

= fn(A, x/L, 6/L). 
f 

In the results of Mori et al. [6], local Nusselt number 
depends on four parameters : b/L, 6/L, Pe and k,/kf. In 
this work, if we treat Nu: as a reduced Nusselt number, 
then Nuf depends only on two parameters besides axial 
distance. It should be mentioned that A is a lump 
parameter which combines the effects of Pe, k,/k, and 
b/L. In other words, the dependence of Nu, on Pe, k,fk, 
and bfL is not individually but through a lump 
parameter A. Results for boundary condition of 
uniform heat flux will be presented in detail. 

Figures 2 and 3 show the effect of A and 6/L on the 
interface temperature profile. From these two figures, it 
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FIG. 2. Axial distribution of interfacial temperature for 
different values of d/L, UHF case, A = 1.36. 

is clear that an increase in 6/L or A tends to make the 
interfacial temperature more uniform. As discussed in 
the previous section, since A is a lump parameter which 

combines the effects of Pe, b/L and k,fk,, results of this 
work are superior to those of previous investigators in 
which only the effects of individual parameter were 
shown. 

Figures 4 and 5 show the results of reduced local 
Nusselt number as a function of axial distance with A 
and 6/L as parameters, respectively. Mori et al. [6] 
obtained interfacial temperature as well as local 
Nusselt number as function of axial distance by using 
the eigenfunction expansion technique. A comparison of 

Figs. 2 and 4 with those presented by Mori et al. shows 
close agreement except for a small discrepancy (N 5%) 
when xt = 0.005 which corresponds to the channel 
outlet in Mori et d’s case. This is because at a distance 
far from the channel inlet, the assumption of a thin 
thermal boundary layer may not be valid. As long as 
xt < 0.001, the solution of this work is very accurate. It 
should be mentioned that for small xt, the 
eigenfunction expansion solution converges too slowly 

I .60 

0.69 

FIG. 3. Axial distribution of interfacial temperature 
different values of A, UHF case, 6/L = 0.05. 
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FIG. 4. Axial distribution of local Nusselt number for different 
values of A, UHF case, 6/L = 0.05. 

to be of practical value. In Mori et d’s work, at 
xt < 0.001, up to 40 terms had to be used in the 
eigenfunction expansion solution. The calculation is 
tedious and solution may not converge. In most 
practical applications, except for the heat transfer 
involving liquid metals, the P&let number is large 
enough such that xt < 0.001, except possibly far away 
from the channel inlet. The asymptotic solution 
presented in this work can be applied to find the local 
Nusselt number. 

Figures 6 and 7 show the local Nusselt number as 

function of axial distance on log-log scale with A and 
6/L as parameters. As expected, all results fall between 
the classical Leveque solutions for constant wall 
temperature and constant wall flux. 

CONCLUDING REMARKS 

The heat transfer problem of a high Prandtl number, 

Newtonian fluid flowing between two thick, parallel 
plates is solved in this work. This is a conjugate problem 
in which the energy equations of solid phase and liquid 

FIG. 5. Axial distribution of local Nusselt number for different 
values of 6/L, UHF case, A = 1.36. 
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FIG. 6. Log-log plot of axial distribution of local Nusselt 
number for different values of A, UHF case, 6/L = 0.05. 

phase are coupled through boundary conditions at the 
interface. The results are characterized by two 
parameters : one is the ratio ofthe thickness offlat plate 
to the length of the channel and the other is a lump 
parameter which combines the effects of all other 
parameters. Although we have only treated Newtonian 
fluid flowing between parallel plates in this work, the 
same method can be applied to non-Newtonian fluid 
flowing in ducts of other geometries. 
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CANAL A PLANS PARALLELES 

Resume-On prPsenle la solution de L&vCque pour le problkme conjuguie d’un tluidc newtonien ii grand 
nombrc de Prandtl qui s’kcoule dans un canal B plans parallPles de longueur tinie. Une pro&dure est 
proposte pour trouver la distribution approchee de la tempkrature interfaciale. On trouve que I’effet de 
la conduction parietale peut @tre caractbrist par deux paramktres. Une solution analytique approchite du 
nombre dc Nusselt local est obtenue. Bien que la solution prCscntte cst suppost% valable seulement pour 
I+ < 0,001, les r&hats ne s’tcartent pas significativement de la solution connuc par dtveloppement en 

fonctions propres, mEme quand X+ = 0,005. 
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DIE GEKOPPELTE LEVEQUE-LOSUNG FtiR NEWTON’SCHE FLUIDE 
IN EINEM RECHTECKKANAL 

Zusammenfassung-Die Leveque-Losung fur ein gekoppeltes Problem bei Newton’schen Fluiden mit 
groger Prandtl-Zahl, die in einem Rechteckkanal von begrenzter Lange stromen, wird vorgestellt. Ein 
Verfahren wird vorgeschlagen, urn die Grenzfllchentemperatur-Verteilung naherungsweise zu ermitteln. 
Es ergab sich, da13 der EinfluB der Warmeleitung in der Wand mit zwei Parametern charakterisiert werden 
kann. Man erhHlt eine geschlossene Naherungslosung fur die iirtliche Nusselt-Zahl. Obgleich fur die in 
dieser Arbeit vorgestellte Losung angenommen wird, dal3 sie nur fiir x+ 6 0,001 giiltig ist, zeigen die 
Ergebnisse, da13 sich sogar fur den Wert x + = 0,005 keine bedeutenden Abweichungen von der bekannten 

Losung (Entwicklung der Eigenfunktion) ergeben. 

COHP%KEHHOE PEBIEHME JlEBEKA AJIcI TErIEHMII HbIOTOHOBCKOn XKMAKOCTM 
B HAPAJIJIEJIbHOM HJIOCKOM KAHAJIE 

AHHOTauIIn-~OnyYcHO peL"eHHe neBeKa COnpXXeHHOfi 3aDaS1( LUIX Te'leHBI HbIOTOHOBCKOii XKAJ,KOCTA 

C 60JIbUIHMYRC~7OM ~paH~T~~BIlapaJIJlWlbHOMIlJIOCKOM KaHaJleKOHWHOfiLUlAHbI.~peJlJlOXeHMeTO~ 

uaxoxaemta IIpH6m0KeHHOrO pacnpenenemn TeMnepaTypbI Ha h4em+asHol rpaeaue. noKasalT0, YT~ 

3@K$eKT IIpOBOLWiMOCTH CTCHKH MOXCT 6bITb OXapaKTepH30BaH nB,'MX IIapaMeTpaMA. nOJIy'ieH0 3aM- 

KHYTOC np&i6JIWKeHHOe BbIpaXKeHHe JIJIX MeCTHOrO YEiCJIa HyCCeJIbTa.HeCMOTps Ha TO,910 CO CTpOrOi? 

TOVKII 3peHm pelrreHae cnpasenmeo TonbKo n.ns x+ <o,m1, pe3yJlbTaTbl nOKa3bIBalOT, 'IT0 HeT 

C,'L"eCTBeHHO,-0 OTKJIOHeHAR OT 113BeCTHOrO peI"eHAX &W pa3JlOXeH&lX "0 C06CTBeHHbIM +YHKL,W,M 

naxe npn x+ = 0,005. 
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